2013 ICDM November 6-9, 2013

송경희

박제현박사

Direct effect of fractalkine on ECM accumulation in diabetic kidneys Hunjoo Ha

Department of Pharmaceutical Science, Graduate School College of Pharmacy, Ewha Womans University, Seoul, Korea

The most common cause of ESRD: diabetes

Pathological changes in diabetic nephropathy

Wada J & Makino H. Diabetes 2006

Similarity of the natural history of Type 2 diabetes and diabetic nephropathy

Wada J & Makino H. Clin Sci 2013

Inflammatory molecules in diabetic nephropathy

Category	Molecule	
Transcription factors	NF-ĸB	
Pro-inflammatory	IL-6	
cytokines and signalling molecules	IL-18	
	IL-1	
	TNF	
	JAK2 and STAT-1, -3 and -5	
Chemokines	CCL2 (MCP-1) and CCR2	
	CXCL12 (stromal-cell-derived factor-1)	
	CX3CL1 (fractalkine) and CX3CR1	
Adhesion molecules	Intercellular adhesion molecule 1 (ICAM1)	
	Vascular cell adhesion protein 1 (VCAM1)	
	E-selectin (SELE)	
TLRs	TLR2	
	TLR4	
Adipokines	Adiponectin	
	Leptin	
Nuclear receptors	VDR	
	NR1H4 (FXR)	
	PPARα	
	PPAR _Y	
	ΡΡΑΒδ	

Wada J & Makino H. Clin Sci 2013

Fractalkine (FKN: CX3CL1) and CX3CR1

- unique member of CX3C chemokine
- 2 forms: soluble, membrane-bound

FKN/CX3CR1 in chronic kidney disease

 Fractalkine expression is upregulated in human crescentic glomerulonephritis.

Furuichi K et al. Nephron. 87:314, 2001

CX3CR1 mediates renal interstitial fibrosis in ischemia-reperfusion injury.

Furuichi K et al. Am J Pathol. 169:372, 2006

• Fractalkine/CX3CR1 mediate hypertensive interstitial fibrosis in the kidney.

Shimizu K et al. Hypertens Res. 34:747, 2011

FKN/CX3CR1 in diabetic kidneys

 Fractalkine/CX3CR1 are upregulated in STZinduced diabetic kidneys.

Kikuchi Y et al. Nephron Exp Nephrol. 97:e17, 2004

AGE induces fractalkine upregulation in normal rat glomeruli.
Kikuchi Y et al. Nephrol Dial Transplant. 20:2690, 2005

Hypothesis

FKN/CX3CR1 system mediates renal fibrosis and inflammation during the development and progression of diabetic nephropathy.

Specific aim 1.

Role of FKN/CX3CR1 in inflammation

Macrophage infiltration in glomeruli was reduced in diabetic CX3CR1 KO mice

mean±SE of 8-12 mice. *P<0.05 vs control CX3CR1+/+, †P<0.05 vs diabetic CX3CR1 -/-

FKN mediated monocyte-MMC binding in diabetic conditions

FKN upregulated adhesion molecule

Diabetic stimuli increased FKN/CX3CR1 protein production in MMCs

HG, 30 mmol/l D-glucose; OA, 100 μmol/l oleic acid; TGF, 10 ng/ml transforming growth factor-β1.

Specific aim 2.

Role of FKN/CX3CR1 in fibrosis

Diabetologia DOI 10.1007/s00125-013-2907-z

ARTICLE

Fractalkine and its receptor mediate extracellular matrix accumulation in diabetic nephropathy in mice

K. H. Song · J. Park · J. H. Park · R. Natarajan · H. Ha

Inhibiting CX3CR1 decreased glomerular volume and fractional mesangial area in mouse kidneys

Renal fibrosis was decreased in diabetic CX3CR1 KO mice

Renal fibrosis was decreased in diabetic CX3CR1 KO mice

ECM markers were downregulated in diabetic CX3CR1 KO kidneys

mean±SE of 8-12 mice. *P<0.05 vs control CX3CR1 +/+, +P<0.05 vs diabetic CX3CR1 -/-

FKN directly induced ECM synthesis through CX3CR1 in MMCs

FKN siRNA inhibited diabetes-induced ECM synthesis in MMCs

mean ± SE of 4 experiments. * P<0.05 vs siScr, † P<0.05 vs HG, OA, or TGF siScr

CX3CR1 siRNA inhibited diabetes-induced ECM synthesis in MMCs

Inhibition of diabetic stimuli-induced FKN/CX3CR1 and FKN-induced ECM secretion with anti-TGFβ aby

Inhibition of FKN-induced ECM levels with inhibitors of ROS, ERK, or p38 MAPK

Suggested model for FKN/CX3CR1 in the regulation of diabetic nephropathy

Inflammatory pathways in the pathogenesis of diabetic nephropathy

Wada J & Makino H. Clin Sci 2013

Collaborators & Acknowledgment

Ewha Womans University - Lee KJ - Jeong LS - Lee HJ - Bai YS Yonsei University - Kim YS - Jung M Sung Kyun Kwan University - Chung MH Busan National University - Chung HY Tohoku University - Miyata T Emory University - Jo H

Supported by National Research Foundation, Korea

Methods and materials

- In vivo
 - 8-week-old CX3CR1 KO mice and age-matched WT C57BL/6J mice (Jackson Lab, USA)

- In vitro
 - Mouse mesangial cells (MMC, SV-40 transformed)
 - Monocytes; WEHI78/24 (Dr. Rama Natarajan in Beckman Research Institute, CA, USA)

Characteristics of experimental animals

	Control		Diabetes	
	CX3CR1 +/+	CX3CR1 -/-	CX3CR1 +/+	CX3CR1 -/-
Body weight (g)	30±1	29±2	22±1 *	20±1 *
Blood glucose (mg/dl)	162±11	172±9	549±13 *	531±22 *
HbA1c (%)	4.53±0.09	4.46±0.10	10.00±0.42 *	11.00±0.66 *
Kidney weight (g)	0.19±0.01	0.18±0.01	0.22±0.01 *	0.24±0.01*
Urine protein excretion (mg/24h)	1.0±0.3	0.9±0.2	4.0±0.7*	3.8±1.0*

mean±SE of 8-12 mice. *P<0.05 vs control CX3CR1+/+

Adhesion molecule upregulation in diabetic condition-treated MMCs

Data are presented as mean ± SE of 4 experiments. * P<0.05 vs Con

ROS were involved in diabetic condition-induced monocyte adhesion to MMCs

ROS were involved in diabetic condition-induced FKN expression in MMCs

Data are presented as mean ± SE of 4 experiments. * P<0.05 vs Con or 0 µM H₂O₂, † P<0.05 vs HG, OA, or TGF

ESM Figure 1. *Fkn* and *Cx3cr1* siRNA, respectively, blocked each mRNA expression and protein levels in MMCs. *Fkn* and *Cx3cr1* siRNA transfected MMCs, *Fkn* (A) and *Cx3cr1* mRNA expression (B) were measured by real-time PCR. FKN protein levels in cell culture lysates (C) and supernatants (E) were measured by ELISA. CX3CR1 protein levels in *Cx3cr1* siRNA transfected MMCs (D) were measured by Western blot analysis. Data were shown as mean \pm SE or representative Western blots of 4 experiments. * *P*<0.05 vs Con or siScr, Con: control, Lipo: lipofectamin, siScr: negative siRNA, siFKN: *Fkn* siRNA, siCX3CR1: *Cx3cr1* siRNA.

Song et al. ESM Figure 1.

ESM Figure 3. FKN directly induced ECM synthesis through CX3CR1 in MMCs. Protein secretion of TGF- β 1 (A), FN (B), and COL4 (C) were determined by ELISA or Western blot analysis. Data are mean \pm SE or representative Western blots of four experiments. *P < 0.05 vs. Con; Con, control or FKN 0 ng/ml.

ESM Figure 5. Inhibition of diabetic stimuli-induced FKN/CX3CR1 protein production and FKNinduced ECM secretion in MMCs treated with TGF-β neutralizing antibody. FKN (A) and CX3CR1 (B) protein levels were measured in MMCs exposed to HG and OA with or without a TGF-β neutralizing antibody. ECM markers such as FN (C) and COL4 (D) protein production were assessed in MMCs incubated with a TGF-β neutralizing antibody before stimulation with FKN. Data are mean ± SE or representative Western blots of four experiments. *P < 0.05 vs. Con, †P < 0.05 vs. HG, OA or FKN; Con, control; HG, 30 mmol/l D-glucose; OA, 100 µmol/l oleic acid; αTGF-β, 5 µg/ml anti-TGF-β neutralizing antibody; FKN, 50 ng/ml fractalkine.

Song et al. ESM Figure 5.

Functional and structural characteristics of diabetic kidney

- Glomerular hyperfiltration
- Altered glomerular filtration barrier: Albuminuria
- Renal and glomerular hypertrophy
- Accumulation of extracellular matrix (ECM) in the glomeruli and the tubulointerstitium

Normal glomeruli Diabetic glomeruli